Nucleon strangeness form factors and PDFs

Takumi Doi
 (Univ. of Tsukuba)
 In collaboration with

M. Deka, S.-J. Dong, T. Draper, K.-F. Liu, D. Mankame (Univ. of Kentucky)
N. Mathur
(Tata Inst. of Fundamental Research)

```
\chiQCD Collaboration
```

T. Streuer
(Univ. of Regensburg)

PRD80(09)094503, arXiv:0903.3232
PRD79(09)094502, arXiv:0811.1779

How strange is the nucleon?

- The (naïve) quark model
- \rightarrow Strangeness = Zero ! (too naïve !!?)
- Note that the vacuum is already "strange"

$$
\langle\bar{s} s\rangle \simeq 0.8 \times\langle\bar{q} q\rangle
$$

- Scalar element
- y-parameter

$$
y=2\langle N| \bar{s} s|N\rangle /\langle N| \bar{u} u+\bar{d} d|N\rangle
$$

- Pi-N-Sigma term, (neutralino) Dark Matter search, μ-e conversion
- Momentum sumrule
- 3-5\% is carried by strangeness (from experiments)
- <x>(s) =0.027(6) ↔LatQCD, M.Deka et al. PRD79(2009)094502
- Axial vector

$$
\Delta s=-(0.1-0) \quad \Delta s=\int d x\left[s_{\uparrow}(x)-s_{\downarrow}(x)+\bar{s}_{\uparrow}(x)-\bar{s}_{\downarrow}(x)\right]
$$

- How about Vector ?

Experiments: parity-violating electron scattering (PVES)

- World averaged data

$Q^{2}=0.1\left(\mathrm{GeV}^{2}\right)$

$$
\begin{aligned}
G_{E}^{s}\left(Q^{2}\right) & =-0.008 \pm 0.016 \\
G_{M}^{s}\left(Q^{2}\right) & =+0.29 \pm 0.21
\end{aligned}
$$

J.Liu et al.
PRC76(2007)025202

$$
G_{E}^{s}\left(Q^{2}\right)=+0.002 \pm 0.018
$$

$$
G_{M}^{s}\left(Q^{2}\right)=-0.01 \pm 0.25
$$

Or

$$
G_{E}^{s}\left(Q^{2}\right)=-0.011 \pm 0.016
$$

$$
G_{M}^{s}\left(Q^{2}\right)=+0.22 \pm 0.20
$$

R.Young et al.

PRL99(2007)122003

$$
\begin{aligned}
& \mu_{p}=+2.79 \mu_{N} \\
& \mu_{n}=-1.91 \mu_{N}
\end{aligned}
$$

Theoretical status for strangeness form factors

- Theoretical status is quite uncertain

DR w/ pole ansatz
DR w/ scattering kaon clouds Quark model
Kaon clouds model
Chiral quark-soliton model
Lattice, direct, quenched
Lattice, direct, quenched
Lattice, direct, quenched
Lattice, indirect, quenched
Lattice, indirect, mixed
(3rd lat: $\mathrm{Q}^{2}=0.1 \mathrm{GeV}^{2}$)

What is the impact of precise determination of strangeness form factors?

- If we can nail them with 3-5 sigmas (both theoretically and experimentally)
- Constrain axial form factor G_{A}^{s} experimentally
- Constrain electroweak radiative corrections

Young et al., PRL97(2006)102002

Anapole moment
\leftrightarrow Test of EW charge constraint of NP (?)

Difficulty in Lattice QCD

- Disconnected Insertion (DI)
- Inevitable for strangeness calculation, but...
- All(source)-to-all(sink) propagator is necessary
- Straightforward calculation (has been) impossible
- $\mathrm{O}\left(1 \mathbf{1 0}^{5}\right)$ inversions for $\mathrm{O}\left(10^{6}\right) \mathrm{XO}\left(10^{6}\right)$ matrix

$$
\operatorname{Tr}\left[\Gamma M^{-1}\right]=\sum_{x} \operatorname{Tr}_{\text {color }}^{\text {spin }}\left[\Gamma M^{-1}(x, x)\right]
$$

Connected Insertion (CI)

Disconnected Insertion (DI)

Theoretical status
 for strangeness form factors

- Theoretical status is quite uncertain

DR w/ pole ansatz
DR w/ scattering kaon clouds Quark model
Kaon clouds model
Chiral quark-soliton model Lattice, direct, quenched Lattice, direct, quenched Lattice, direct, quenched Lattice, indirect, quenched Lattice, indirect, mixed

Strangeness form factors from Lattice QCD with direct calculation of D.I.

Configurations

- Nf=2+1 dynamical clover fermion + RG improved gauge configs (CP-PACS/J LQCD)
- Beta=1.83, ($\mathrm{a}^{\wedge}-1=1.62 \mathrm{GeV}, \mathrm{a}=0.12 \mathrm{fm}$)
- 16^3 $\times 32$ lattice, L=2fm, about 800 configs
- Kappa(ud)=0.13825, 0.13800, 0.13760, kappa(s) $=0.13760$
- $M(p i)=610-840 \mathrm{MeV}$
T.Ishikawa et al., PRD78(2008)011502

- Calc 3pt function w/ conserved point-split vector current

$$
\begin{array}{cc}
\langle p, s| V_{\mu}(0)\left|p^{\prime}, s^{\prime}\right\rangle= & \bar{u}(p, s)\left[\gamma \mu F_{1}-\sigma_{\mu \nu} q_{\nu} \frac{F_{2}}{2 m}\right]_{\text {Pauli }} u\left(p^{\prime}, s^{\prime}\right) \\
\text { MENU2010 @ Willam \& Mary }
\end{array}
$$

Disconnected Insertion (DI)

- Stochastic Method for DI
- Noise

$$
\lim _{L \rightarrow \infty} \frac{1}{L} \sum_{l=1}^{L} \eta_{i}^{l \dagger} \eta_{j}^{l}=\delta_{i j}
$$

S.-J.Dong, K.-F.Liu, PLB328(1994)130

- DI loop

$$
\operatorname{Tr}\left[\Gamma M^{-1}\right]=\lim _{L \rightarrow \infty} \frac{1}{L} \sum_{l=1}^{L} \eta^{l \dagger}\left(\Gamma M^{-1} \eta^{l}\right)
$$

Stochastic source

Signal part

Noise part

DI calculation: stochastic method

- The unbiased subtraction using hopping parameter expansion (HPE) to eliminate off-diagonal noises

Yet, further improvement required

- Many nucleon sources

S/N improves
by $\sqrt{\text { Nnoise }}$
S/N improves
by $\sqrt{N s r c}$

\#src=
64 or 82
N.B. The calculations of loop part and 2pt part are independent !

Numerical Results

The result for $\mathrm{G}_{\mathrm{M}}\left(\mathrm{Q}^{2}\right), \mathrm{G}_{\mathrm{E}}\left(\mathrm{Q}^{2}\right)$

Linear slope corresponds to signal
By increasing the nucleon sources \#src=4 \rightarrow 64, the signal becomes clear

Error bar reduced more than factor 3 !

Q^{2} dependence of $\mathrm{G}_{\mathrm{M}}\left(\mathrm{Q}^{2}\right), \mathrm{G}_{\mathrm{E}}\left(\mathrm{Q}^{2}\right)$

\leftarrow dipole function fit

$$
G_{E}^{s}\left(Q^{2}\right)=g_{E}^{s} \cdot Q^{2} /\left(1+Q^{2} / \wedge^{2}\right)^{2}
$$

\leftarrow cutoff mass Λ is taken from G_{M} fit (one param fit)

1 Chiral Extrapolation for $\mathrm{G}_{\mathrm{m}}(0)$

Weak quark mass dependence

The error is about a factor of 10 smaller than previous direct lat calc and/ or experiments !

Chiral Extrapolation of $\left\langle r^{2}{ }_{M}\right\rangle,\left\langle r^{2}{ }_{E}\right\rangle$

$$
\begin{aligned}
& \left\langle r_{s}^{2}\right\rangle_{M}= \\
& \quad-7.4(71) \times 10^{-3}\left(\mathrm{fm}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle r_{s}^{2}\right\rangle_{E}= \\
& \quad-2.4(15) \times 10^{-3}\left(\mathrm{fm}^{2}\right)
\end{aligned}
$$

Systematic Uncertainties

-Uncertainty in \mathbf{Q}^{2} dependence

- We test monopole form instead of dipole form
- \rightarrow consistent results, we consider differences as systematic error
- Uncertainty in chiral extrapolation
- We test different extrapolations using nulceon mass mearesd on the lattice
- \rightarrow consistent results, we consider differences as systematic error
- Contamination from excited states (Roper, $\mathrm{S}_{11}\left(\mathrm{~N}^{*}\right)$, etc.)
- We use different projection to kill S_{11} (1st excited state on lat)
- \rightarrow Almost identical results, negligible S_{11} contamination confirmed
- Finite Volume artifact
- Sachs radii are found to be small $\quad\left|\left\langle r_{s}^{2}\right\rangle_{E, M}\right| \ll 0.1\left(\mathrm{fm}^{2}\right)$
- \rightarrow this may indicate small finite V artifact
- Form factors in isovector (Cl) is known to suffer from small finite V artifact
- Discretization Error
- Check on dispersion relation \rightarrow finite (q a) error is negligible
- Discretization error in nucleon, kaon mass are around 6-8\%

The error is about a

 factor of 10 smaller than
Final Results

previous direct lat calc and/ or experiments !

Comparison with experiments

- G0 (forward $e p)+\mathrm{E} 734(v p$ and $\bar{v} p)$
- HAPPEx (forward $e p)+\mathrm{E} 734(p p$ and $\bar{v} p)$

Pate, Papavassiliou \& McKee, PRC 78 (2008) 015207

- PVA4 (forward and backward ep)

Baunack et al., PRL 102 (2009) 151803
$\boldsymbol{\nabla}$ G0 (forward and backward ep, and backward ed)
Androic et al., PRL 104 (2010) 012001

- HAPPEx (forward $e p$ and $e^{4} \mathrm{He}$) + G0 (forward $e p$)
+ SAMPLE (backward $e p$ and $e d$) + PVA4 (forward $e p$) near $Q^{2}=0.1 \mathrm{GeV}^{2}$
Liu, McKeown \& Ramsey - Musolf, PRC 76 (2007) 025202

Strangeness PDFs in nucleon

Analysis for $\left\langle x^{2}\right\rangle$ (D.I.)

$$
\left\langle x^{2}\right\rangle_{s-\bar{s}}=\int_{0}^{1} d x x^{2}(s(x)-\bar{s}(x))
$$

\rightarrow Information about asymmetry between s and sbar
\rightarrow Could be crucial information to explain
NuTeV anomaly (Weinberg angle is 3σ away)

Results for $\left\langle x^{2}\right\rangle$ (s)

$(k a p=0.13760)$

$$
N f=2+1
$$

Preliminary

Linear slope
corresponds to signal

By increasing the nucleon sources \#src=4 \rightarrow 64, error bar reduced more than factor 3 !

Analysis for $<x>$ (D.I.)

First moment of the nucleon

$$
\langle x\rangle_{q}=\int_{0}^{1} d x x(q(x)+\bar{q}(x))
$$

There have been no calculation for DI!

Chiral Extrapolation for $<x>$ (DI)

$<x>$ (ud) [DI]

$<x>$ (s)
$N f=2+1$

From small sampling data: Full analysis in progress

We expect we can furhter reduce the error by subtraction technique using clover-fermion HPE

Note: The values are not renormalized

Summary/Outlook

- We have studied the strangeness form factors $\left(G_{E}, G_{M}\right)$ in the nucleon
- Nf=2+1 clover fermion
- Disconnected Insertion (DI) has been calculated directly using stochastic method
- Unbiased subtraction w/ HPE up to 4th order
- Many nucleon sources are essential to improve S/N

$$
G_{M}^{s}=-0.015(23), \quad G_{E}^{s}=+0.0022(19) \quad \text { at } Q^{2}=0.1 \mathrm{GeV}^{2}
$$

- Analysis for $\left.\langle x\rangle,<x^{2}\right\rangle$ in progress
- Outlook
- Explicit calc w/ lighter quark mass, larger \& finer Lat box
- Various quantities of D.I., sigma term, nucleon spin, etc.
- All-to-All using deflation

